
I.Computation and Analysis !.)
SYSTEMSDIVISION

A. Computer Technique for Electron and Ion fl 6 7 - _ 9 I _ 3
Gun Design, N. C.Adams

The article "Electrostatic Charge Densities on an / \
Electro-optical Star Tracker," by N. C. Adams, E.M. , /

Keberle, and W. Silsby (SPS 37-42, Vol. IV, pp. 10--15) / (x,¥) _
was the first phase of an attempt to evaluate the motion

of electrons through an electric field set up inside the [--/_/--
star tracker. Several problems arose with this basic ap- -'J
pro_ch, forcing further investigation and study. A more
computer-oriented method was subsequently discovered x

which permits the analysis of electron motion through Fig. 1. Mesh oveday on electrodes
instruments with general-type external boundary condi-

tions. A computer program is currently available for this Laplace's equation in two dimensions
work?

O_V + 02V = 0
The problem was approached by replacing the con- 8x'-"F _y-'v

tinuous Laplace (or Poisson's) equation by a set of finite

difference equations. The region of interest was then becomes
overlayed with a fine mesh (Fig. 1), and the difference

equation was written for each mesh point. The result_g 1 [V(x + h, V) + V(x,y -I-h)matrix equation and the equations of motion were then V(x, y) = ._
solved.

(

+ v(s - h, V) + V(x, V - _'_
'The programin itsoriginalformwasobtainedfromDr. V. Hannm,
Bellcomme. for any mesh point (x, y). '

JPL SPACEPROGRAMSSUMMARY 37.44, VOL. IV 1_1
[
E

n m Im_mJ

1967019812-024

Poisson's equation in two dimensions where

73

).____V_V+ ?_v _ p 4, - motion of perihelion per unit of revolution
_'x'-' ?y-' _,, (non-dimensional)

becomes
a = semi-major axis

1 [V(x + h. y) + V(x, y 4- h) + V(x - h, y) C = speed of lightV(x,y) -- -4
e = eccentricity

+ V(x, y-- h)] + ---P
¢, T = orbital period t

By writing the difference equations for each mesh point For the planet Mercury, this amounts to some 48" per
we obtain N linear algebraic equations with N unknowns, century in excess of the Newtonian prediction. The de-
This matrix equation is then solved and numerical differ- gree to which this figure satisfies the discrepancy noted
entiation is performed to compute _V/_x and _V/_y. This above has long been regarded as a strong confirmation
yields the force which is required for the equations of of general relativity.
motion.

Recently, doubt has been expressed in some quarters
The following is an example of the analysis which can that the alleged confirmation is really what it seems.

be performed using this program. Given a specific elec- R.H. Dicke (Ref. 2), in advocating an alternative gravi-
• trode configuration one would like to focus the electrons tational theory, has discussed the implications for general

on an image plate in such a manner as to minimize the relativity which attend his measured value c,f the oblate-
dispersion diameter. Different runs can be made varying ness of Sun. His computations indicate that the measured
one design parameter at a time to determine its effect solar oblateness requires a motion of 8" per century in
on the focusing. Once a satisfactory dispersion diameter the perihelion of Mercury, which is incompatible with
has been obtained in conjunction with an acceptable the published comparisons between observations and
geometry the design is complete, general relativity theory (Ref. 1, 8, 4).

At this time the design pazameters must be changed While there are still some unanswered questions re-
manually. Future work will include automating this part garding the effect of solar oblateness, it is nonetheless

of the program. Continued modifications are expected worthwhile to re-examine the contributions to the peri-
for this program; however, it is available for use in its helion motion according to Newtonian theory and that
current state, due to Eq. (1). These values are directly related to the

adopted values of the planetary masses, for many of
which there have been significant redeterminations re-

B. Periholion Motion of Mercury, J. O.Mulholland cently.

The perihelion motion of the planet Mercury has been

a subject of lively interest ever since the discovery, in I have taken the data given by Clemencc (Ref. 1) and
the mid-nineteenth century, that Newtonian theory failed revised them linearly with the changes in the adopted
to satisfy the observational data. Numerous hypotheses values of the masses and their standard deviations. The

were advanced in attempting to account for the discrep- revised value of the relativity effect is computed using
ancy, but it was not until the development of the general C = 299 792.5 km/see and elements of Mercury taken
theory of relativity that a reasonably satisfactory explana- from Ref. 5. Table 1 gives the resulting data.]
tion was found. This theory t_redicts a motion of peri- j

helion in excess of the Newtonian value by the amount The application of the revised masses appears to have |
(Bef. 1) improved the correspondence between theory and ob-

servation to an extreme degree. The discrepancy is indi-
12,r'a _ catod as less than one-fourth the formal standard error.

= ¢'T 2 (1 - e_) (1) If we fellow Clemenee (Ref. 1) and estimate the obhteness

14 JPL SPACEPROGRAMSSUMMARY 37.44, VOL. IV

1967019812-025

effect (based on the rotation of the outer parts of Sun) will contribute changes to 8_. Such changes have'occurred
as being 0".'10 ___0'.'20,then the discrepancy is reduced to both because of analytic refinement and due to revision

of mass values. Linear adjustment'; ill 37, due to mass
0'.'05±0'.'68 revisions will I_ot entirel_ at for the true effect. If

Dicke's results are confi, ,, ,_. it will be necessary to

which is truly overpowering, if one believes it. This seems recompute the Newtonian components of 8_ ab initio in
to indicate that no reconci]".ation is possible between the order that a reliable comparison of theo W and observa-
existence of a solar oblateness as large as is claimed by tion can be made.
Dicke and the soundness of general relativity. I do not,
however, regard this as a valid conclusion to be drawn
from the present data. C. FORTRAN IV Language Extensions:

ENCODE/DECODE Statements, I-I.L.Smith

The most obvious of the weak links in the comparison 1. Introduction
of Table I is the value of general precession. Tile range
of values currently in use for this quantity (reduced to This article describes an extension to the FORTRAN IV
1850.0) is from Newcomb's 50_7_ to Oort's 5025'.'645. language that include_ the ENCODE and DECODE
Newcomb's value is probably too low, but the present statements implemented for the IBM FORTRAN IV
condition of the theory of motion of Earth is bad enough compiler in the 7094 computer. These statements are
that we cannot hope for a great deal of confidence in conceptually associated with the formatted WRITE and
any compromise value, such as that in Table 1. READ statements, respectively. In an ENCODE/

DECODE operation, no actual input/output takes place;
On the other hand, the planetary contributions are data conversion and transmission take place between an

"* based on planetary theories, and changes in the theories internal buffer and elements specified by a list.

Table 1. Contributionsto perihelionadvance 2. Description

(epoch 1850.0) In a number of data processing applications, it is nee-
essary to process data at the character level. While the

Nawta.lanthe*ry FORTRAN language is word-oriented, some provision is

Planat lima, 6_ made to process character data in the formatted input/
output statements. The ENCODE and DECODE state-

Me,cury 6047000-+-17000 0"025± 0 me_,ts utilize the syntax of the FORMAT statement and
venus 405sos +--6 277"4_9"+=o _ the subroutines which are normally in memory to process
Earth-Moon 328900-----t 90'.'172"+-n the FORMAT statements. In addition to the compiler

Mars 3098335-_'600 2,,527.4.0 changes, modifications to the FORTRAN library sub-
routines FCNV and FIOH were made to interface with

Jupiter 1047.404 -----0.02 1$3".584 _ 0
, a new subroutine FRRD.

Saturn 3499.6 _ 0.4 7"301 _- 0

Uranus 22930 "- 6 0.'141 "+"0
a. ENCODE statement. The general form of the

Neptune 19070 "+"21 0._043± 0 ENCODE statement is
Total 531:282 ± 0.01

Gen,rolcelo,v_ andpr,ce,,lo, ENCODE (a, b, c, d) l/st

General relativity 42:98 "j- 0.03 where
General precession (Duncombe) 5025:32 ± 0.50

a is an unsigned integer constant or an integer variable
Totalvalve,observedvalue,maddiscrepancy whose value specifies the number of characters per

Total value (Newtonlan theory internal record.
+ relativity "t- precession) 5599:59 ± 0,50

Observedvalue 5599:74± 0.4_ b is either the statementnumber or the array name of
the FORMAT statement describing the data being en-

Discrepancy 0:15 ± 0.65
coded.

JPL SPACEPROGRAMSSUMMARY 37.44, VOL. IV 15

1967019812-026

c i_ an array, an array element, or a variable name c is an array, an array element, or a variable name
which specifies the starting location of the internal which specifies the starting location of the internal
buffer, buffer.

d is an optional integer variable into which will be d is an optional integer variable into which will be
stored, upon completion of the operation, the number stored, upon compleuon of the operation, the number
of characters actually generated, of characters actually scanned.

list is as specified for a WRITE statement, list is as specified for a READ statement.

The ENCODE statement causes the data items speei- The DECODE statement causes the character string
fled by the list to be converted to character strings, beginning at location c to be converted to data items,
according to the FORMAT specified by b, and placed in according to the FORMAT specified by b, and stored in
storage beginning at location c. the elements specified by the list.

Characters are placer] into the buffer, starting with the Characters are obtained from the buffer starting with
first character position of the location specified by c, in the first character position of the location specified by c,
consecutive character positions. When a new record is from consecutive character positions. When a new record
begun, it starts at the first character position following is begun, it starts at the first character position following
the previous record; in other words, the second record the previous record; in other words, the second record
begins at character a + 1. The beginning of logical begins at character a + 1. The beginning of logical
records, except for the first, can be referenced only if a is records, except for the first, can be referenced only if a is
an integral multiple of the length in bytes of the variable c. an integral multiple of the lengtl', ia_bytes of the variable c.

As with formatted READ operations, if the FORMAT
If the number of characters generated by the FORMAT

statement requires more characters from a record than
statement is greater than the specified size of the record,

are specified by the count a, the extra characters are
the extra characters are lost; they are not filled into the

taken from increasing storage addresses following the
following record. If fewer characters are generated than

specified record. The extra characters should not be as-
are necessary to 1_11the record, it is filled out with blanks, sumed to be blanks.
The ENCODE operation of filling the unused record
with blanks is done after generating the characters. This
differs from the formatted (BCD) WRITE operation of If d is specified, it will be set to the number of char-
only blanking the first three words of the output buffer acters scanned for all the records processed, excluding

the characters passed over when skipping to the next
prior to generating the characters, record.

If d is specified, it will be set to the number of char-
3. Examples

aeters generated for all of the records processed, exclud-
ing any trailing blanks used to fill out the record. The following is a method of packing the partial con-

tents of two words into one word. Information is stored

b. DECODE statement. The general form of the in memory as follows:

DECODE statement is LOCX SSSSxx (6 BCD characters/word)

DECODE (a, b, c, d) l/st LOCY xxxxTT

where To form SSSSTT in storage location LOCZ use the

a is an unsigned integer constant or an integer variable following:
whose value specifies the number of characters per DECODE(6,1,LOCY) TEMP

internal record. 1 FORMAT(4X,A2)

b is either the statement number or the array name of ENCODE(f,2,LOCZ) LOCX, TEMP i
the FORMAT statement describing the data being i
decoded. 2 FORMAT(At, A2) :l

16 JPL SPACEPROGRAMS SUMMARY 37-W1, VOL. IV

1967019812-027

The DECODE statement places the last 2 BCD char- article will present the fundam .ltals of syntactic pro-
_cters of LUCY into the first 2 characters of TEMP. The cessors, and in particular, discuss two such processors
ENCODE statement packs the first 4 characters of which have proveo quite useful.
LOCX and the first 2 characters of TE.MP into LOCZ.

2. SyntaxNotation

The ENCODE statement may be used to compute a The syntax of a programming hmguage is the speclfi-
field width specification for a FORMAT definition at ob- cation of the structure of the language. In fact, the syn-

ject time. Assume that in the statement FORMAT(2A6,Ij) tactics of programming languages are quite analogous to
the programmer wishes to specify j at some point in the that of natural languages. For example, a paragraph
program. The following permits j to vary. could be compared to a procedure or block and a com-

mon sentence cc ,ld be compared to a declaration or
REAL FMT (2) assignment statement in a progran,._ing language. Just ase

. diagramming natural languages aids in understanding
their structure, similar diagramming of programming

ENCODE (12,1,FMT) J languages will clarify their structure. One popular form

1 FORMAT (_H(2A6,I,II,IH)) for such diagramming is known as Backus Normal Form
(BNF) (Ref. 6). The principal features of a dialect of this

• form are:
o

WRITE (6,FMT) A,B,M (1) A definition has the form

_ LI_;CODE packs the value of J (converted to BCD) syntactic-type-being-defined := definition-1/
with the characters: (2A6,I). This packed FORMAT is definition-2/...

_ stored in locations FMT(1) and FMT(2). The WRITEstatement will output A and B under the specification A6 (2) The symbol : = separates the element being de-
t_ and the quantity M under the specification Ij. fined from its definition.

' _-_'_ 4. Status (8) The symbol / separates alternates.

Implementation of the ENCODE/DECODE state- (4) Terminal symbols are enclosed by quote marks.
ments is currently operational. The coding is being for-
warded to IBM for inclusion in the SHARE Program (5) Non-terminal symbols stand by themselves without
Library, thus making it available for all 7090/7094 corn- quotes.

: puter installations.

_ (6) Definitions be grouped by the use of
may paren-

theses.

_ D. Syntactic Processors, D. A. Germann
; (7) Iteration of a definition is indicated by enclosing it

._' 1. Introduction in parentheses preceded by a dollar sign.

_j Computer-program language processors have tradition-
, _ ally developed along the lines of embedding analysis and (8) A null definition is indicated by the symbol .NULL.
_ 6,ode generation as an integral part of the processor.

::-_ Although this generally produces the fastest processor, As a simple example, consider the following:
_: modifications to the processor are usually difficult and
_ time consuming. Consequently, as a research tool in person:= man/woman

[_ language development, the traditional has
processor very

limited use. This simply defines a person as being either a man or a
woman. Now, assume we wish to define a crowd as being

_t: an arbitrary number of persons. Using rule 7 we could, To provide the tools needed for the investigat/on of write:
._ languages, syntax-directed processors are used, since

-_._ modifications to the processor are relatively simple. This crowd : = $(person)

"_ JilL SPACEPROGRAMSSUMMARY _7-44, VOL. IV 17'

1967019812-028

As another example, eonsid(.r the following algebraic PRIME :=- VAR/'('SUM')'

expressions: VAR : = / / ,,,'A' 'B' ,r_'

C

As a final example, the syntax for a subset of FOR-
13 - C TRAN IV is shown in Fig. 2.

A * (B 4+ C_ 3. Development of Syntactic Processors

The syntactic equations which define these expressions Before discussing syntactic processors, a few defini-
are as follows: tions need to be introduced (Ref. 7):

SUM := TERM $('+' TERM) (1) Source language: The language being described.
For example, in Fig. 2 the source language is a

TERM : = PRIME $('*' PRIME) subset of FC3RTRAN IV.

• SYNTAX. L
_ORTRAN-PROGRAM..= $1 ARRAY-STATEMENT) $(STATEMENT) END-CARD 2

ARRAY-STATEMENT..= +DIMENSICN I ARRAY-LST EOC 3
ARRAY-LST..= SIN-VARIABLE .(o INTEGER °l' $('t I SIM-VARIABL_ +(e #

INTEGER 'a' I =
STATEMENT.." REMARK / CODE-STATEMENT 6

REMARK..= ICe 7
CODE-STATEMeNT..= LABeLI.NULL (FORMAT-STAIEMENT I UNLABELED STATEMENT) 8

. LABEL..= INTEGER 9
FORMAT-STATEMENT..= JFORMAT t i(i FORMAT-SPECS Oll EOC 10
UNLABELED-STATEMENT..= IF / GOTO / STOP / R_AD / WRITE / ASSIGNMENT 11

IF..= tiFf l(, BOOLEAN-EXPR_S el, UNLABELED-STATEMENT EOC 12
BOOLEAN-EXPRES..= SLM (REL-DP SUM 1/ .NULL ZJ

REL-OP..= I.EQ.I / I.NE-I / I._T,I / I-LT.' 1_
GOTO..= 'GO' tTOI LABEL EOC 15
STOP-. = ISTOP° lb
READ..= IREAD' UNIT-FORMAT ID-VAR-LST EOC 11
wRITE.,= 'WRITE' UNIT-FORMAT IO-VAR-LST EOC 18

UNIT-FORMAT..= lie INTEGER It' LABEL lie 19
IO-VAR-LST..= VARIABLE S('t o VARIABLE) ZO

ASSIGNMENT..- VARIABLE '=' SUM EOC 21
SUM,.- TERM $(ADS TERM I 2Z

TERM,.- PRIME $(NOD PRIM_) Z3
PRIME.." ADSI.NULL (VARIABLE I CONSTANT / FUNCTION / 2_

t(, SUM eli) 25
AOS..- o+l / o-o Z6
MOD..= e.o / OlD 27
VARIABLE.." SIN-VARIABLE (mll SUM ,)l)/.NULL 2B

SIN-VARIABLE..- ALPHA $I ALPHA-NUN) 29
CONSTANT,,- INTEGER ('.' INTEGER/.NULL)/.NULL)O
FUNCTION.." NAME (e(I SUM $(etl SUN) tit)/-NULL 31

NAME,,- ALPHA S(ALPHA-NUM) JZ
ALPHA.." tAt / tBt / eCe / ,Or / ,_t I eFI / tGe / till / 33 ;

DID / ojt / OKO / OLD / ONe / ONO / ODD / opo / 36
IO° / 'R ° / IS° / _T ° / 'U ° / °V° / °W° / °X° / 35
Y / _L' 3b

DIGIT.," DID I '2 ° I '3' I o6o / .5o I obo I o7, / ODD / 37
°9' / DO° 38

INTEGER..- $(DIGIT) 39
ALPHA-NUN.,- ALPHA I DIGIT 40

END'CARD.." _ENO' EOC 61
6Z

.END _3

Ftg. 2. BIMFdescription efa subset ef FORTRAN IV

11 Jtl, SPACI PINDOIMUilS SUMMARY 17"44, VOL IV

1967019812-029

(2) Metalangt'age: The describing language; that is, machine. This meSa machine (Ref. 9), described in Tables

the language used to describe the source language. '2 and ._, contains only those instructions useful'in trans-

In Fig. 2 the metalangnage might be considered lating a source language into its target language. In fact,
that dialect of BNF described in Subsection 2. using these instructions, converting from the BNF nota-

tion to an assembly code is almost immediate. For
(._) Target language: The language produced from the

source hmguage by the language processor. Usually, Table 2. Description of meta machine
this is an assembly language or actual machine

.. code. Item Description

Now, having been introduced to the terminology, INBUF An input buffer containing a continuous string of- input characters

assume we wish to create a hmguage pro,'ess._: to trans-

late source language A to target language B tar machine OUTSet An output bufferto be punchedand printed

X. The classioal steps to accomplish this would be: STACK A push-downstack

(1) C')mplctely _pecify source language A, perhaps FLAGn toglcal flogs (o-n)used for programcontrol

using the BNF notation or another convenient

metalanguage. Table 3. Subset of mesa machine instructions

(2) Determine the relation between sgurce language A
Opera-

" and target language B. ,_ Argument Instruktion

(8) Hand-write the processor to accomplish this trans- TST STRING, Compare the first non-blank string in the

-_ lation using an existing language on machine X. FLAGn inputstceamto the stringgivenas on

argument. If the strings are identical,

delete the string from the input and set

._" As may be expected, this is not a trivial task; at best, it FLAGntrue.Otherwise, set FLAGnfalse.

is both time consuming and quite prone to errors. A more tO FLAGn Test,f the nextnon-blankinput string is
desirablemethod would be to have a "universal" pro- on identifier. If so, del._te it from the

eessor which will accept a description of the source inp.t, placingit es thetop elementof
language and proceed to parse and generate code accord- STACK,and set FLAGntrue. If not on

"_ ing tO this description. This is exactly the philosophy of identifier,set FLAGnfalse.
syntax-directed processors. To further clarify the differ- CAtS AAA Fnler the procedure at locationAAA.

ences between a conventional language processor and a ,_ AAA Returnto the procedure which lost called
syntax-directed processor, the processors are diagrammed AAA.

." in Fig. 8 (Ref. 8). SET FtAGn Set FtAGntrue.

:_ RESET FLAGn Set FLAGn fal*e.

At this time this mystical "universal" processor, along n AA Ironchunconditionallyto locationAA.1

with its metalanguage input, will be developed. This IT AA, FLAGn Iranch to location AA only if FLAGn is true.

,:, processormay be consideredas a simulator of a special IF AA, FLAGn Ironch to location AA only if FLAGn is false.

PIIINT STRING Print out the siring.

(a) (b) TEMP , n Creole o symbol of facto 'TMPn' and place
$OURC[SOURCE it in STACK.

tANGUAG[

. _ _ INC N,X Increment N by X.
POP Pop the top o'_ment in STACK.

[-'-[4_ S'_'T_-

WITH _ _ DUq[CTED I,AI Reset the evlpvt pointer le ¢slvmn !.

AIML.YSIS SYNTAX | _ OUT ISTIINO/'n) Outlet ol_ar the lite_l string or Hie ark

l l ._,., hi the STACK. Ovtpu, pain. l,
W l reset te colwam S.

TARGET TbJYGtT

L _._9_ lair _ STOP Prlqlm" step.

_ Daoolol ood el PrOSeon.

Fig. $. Processors: In) convl_1111iolrlml;(b) syntax-directed ,

JP£ SPAC| PIIOGRAMS SUMMARY _17-44, VOL. N 19

1967019812-030

i

example, the four s_ntactic -.quations presented ,_l Sub- PRIME ID FLAG1
section 1 describing a class of algel)raic equatio,ls are BT PRIME2,FI,AGI
coded below. TST '(',FLAG1

BF I_ADERILFI_A_;i
CALL SAVE

SUM CALL TERM CALL SUM
TST ' �'.FLAG1TST ')',FLAGI

BT SUM,FLAG1 BT PRI\IE2,FLAG1
RET SUM PRINT 'MISSING RIGHT PAREN'

TERM CALL PRIME PRIME2 RET PRIME

TST '*',FLAG1 BADERR PRINT 'UNRECOVERABLE ERROR"
BT TERM,FLAG1 STOP
RET TERM

SAVE BF SAVE1,FLAG2
PRIME ID FLAGI INC N,1

BT PRIM1,FLAG1 TEMP N

TST '(',FLAG1 OUT ('STO ',*1)
BF BADERR,FLAG1 RESET FLAG2
CALL SUM RESET FLAG.3
TST ')',FLAG1
BT PRIM1,FLAG1 SAVE1 RET SAVE
PRINT 'MISSING RIGHT PAREN' OUTADD BF OUTAD2,FLAG2

PRIM1 RET PRIME OUTAD1 OUT ('FAD ',*1)

BADERR PRINT 'UNRECOVERABLE ERROR' POP
STOP RET OUTADD

: OUTAD2 OUT ('CLA ',*1)
i POP
i Note that although the source language is completely SET FLAGg

described, no consideration for the target language B OUTAD1

(step 2, above) has been made. The exact details of this
translation are much too involved to be included in this OUTMPY BF OUTMP2,FLAG 9.

article; herce only the results are shown below. GUT ('XCA')
OUTMP1 OUT ('FMP ",*1)

: POP
SUM CALL TERM RET OUTMPY

TST '+',FLAG1 OUTMP2 OUT ('LDQ ',*1)
BF SUM2,FLAG1 POP
BF SUM1,FLAC,3 B OUTMPI
CALL SAVE END

SUMI CALL SUM

CALL OUTADD At this point, let us review briefly what we have accom-
SUM2 BET SUM plished. Baslca]]y, all we did was to create a simulator

TERM CALL PRIME for a machine design,_ for language translation. Next
we encoded the source language description (and its

TST '*',FLAGI relation to the target language) into a form acceptable to
BF TERM_,FLAGI the simulator. The next logical step is to allow the input
SET FLAG3 to be in a form famfl/ar to the programmer, namely in
CALL TERM Backus Normal Form. This is easily accomplished since,

_; CALL OUTMFY due to its simplicity, the recogldzatton syntax n, y be
TERM2 BET TERM given in only llve statements.

=, 20 JP/. SPAC| PlOO_tMS SUMMARY #;'-44, VOlt. /V=

im

1967019812-031

BNF-PROf;RAM : '.SYNTAX.' $(STAT) '.END' the equal sign is |ound, an error message would be issued.

STAT :=- IDENT' ' EXPI To avoid this diflqculty, we could resort to a keyword
language requiring that certain key words not be used as

EXP1 :=: EXP2 $('/' EXP2) variables. A better solution would be to use backup;

EXP2 := EXP:3 $(EXP:3) that is, after finding that the statement is not correct, the
input pointer is backed up and the altern._te is called.

EX:3 ::- IDENT / STRING /

The differences ia .output flexibility _J,e more subtle.
'(' EXP1 ')'/'$' ")'EXP1 ')'

In META the output occurs at the same time as the
scanning or parsing, whereas in TMG the output is

4. PracticalConsiderationsof SyntacticProcessors accumulated in an output tree and all output occurs when
As stated in the introduction, two syntactic processors the parsing i': complete. The primary wdue in postponing

have been used extensively. These two, TMG and META, the outFur is the ability to pass arguments between the
differ primarily in the following aspects: (1) backup wirious output definitions and the ability to perform a
capability, (2) output fexibility, and (._) dictionary and post analysis before the actual output.
classification ability.

The third difference, the dictionary and classification
By backup capability, I mean the ability to rescan an ability, can be best illustrated by the following example:

input stream. For example, con._i:ler the following assign-
ment statement: J = WHAT(I)

IF(J) = I + K Using the meta system, it is unknown whether "WHAT"
is an array variable or a function reference. Clearly it is

Using the syntax of Fig. 2 and the meta machine d_s- desirable to r_:ain certain attril3ates about the variables.
_: cussed in Subsection 8, the _tatement would have beer For this reason, TMG has provided for --'raining up to

erroneously recognized as an "IF" statement. Thus, when 18 bits of information for each variaJ_le ,ound.

_, References

,_ 1. Clemenee, G. M., Reviews of Modem Physics, Vol. 19, pp. 861-364, 1947.
"'| 2. Dicke, R. H., Physics Todav, Vol. 20, pp. 55-70, january 1967.

,_ 3. Duncombe, R. L., Astronomical Papers of the American Ephemeris, Vol. 1B,
Part 1, 1958.

4. Wt_.yman,P. A., Ouartedu]ournal ot the Roya/A,aronom/c, al Society, Vo!. 7,

•_ pp. 138-156, 1966.

" 5. Allen, C. W., Astrophysical Qua//tiea, 2rgl Ed., University of London, 1968.

_ 6. Baelms, J., "l'he Syntax and Scw.ant/_ of the Proposed Inte._Btional Algebraic
Language of the Zurich ACM-GAMM Conference," Pro¢. F/rat Intern. Conf.,

_: Informat/on PngeJw/ng, UNESCO, Paris, France, 19eO.

7. Rubinol[, M., Adwnces in Compute_, Academic Press, New York, 11_1.

,_ 8, Ingermau, P. Z., A Syntaz-Oflented Tmmbstor, New York, Academic Prom,
" 1966.

JP& SPACEPROGRAMSSUMMARY :17-44, VOL. N Sl

mmr

1967019812-032

References(contd)

9. Schorre, D. V., "'Mc'ta II, A Syntax-Oriented Counputer Writing Language."

1964 Proceeding.s, ACM, pp. DI.:3-1-D1.,']-ll.
'4

10. McClure, R. M., "FMG-A Syntax-Directed Compiler," 1965 Proceedings,

AC31, pp. 26"9.2-:274.

22 JPL SPACE PROGRAMS SUMMARY 3T-44, VOL. IV

1967019812-033

